272 research outputs found

    β factor in a random laser

    Get PDF
    We develop a definition for the β factor, the fraction of spontaneous emission that seeds the laser process, for a random laser. With the wavelength-dependence of the gain (and potentially scattering) being the only possible criterion in the competition between gain and loss, our concept of β is based on the spectral properties of the spontaneous emission and laser light. We find β≈0.1. We discuss the apparent similarities and differences between the β for a cavity and a random laser

    Spectroscopic optical coherence tomography at 1200 nm for lipid detection

    Get PDF
    Significance: Spectroscopic analysis of optical coherence tomography (OCT) data can yield added information about the sample's chemical composition, along with high-resolution images. Typical commercial OCT systems operate at wavelengths that may not be optimal for identifying lipid-containing samples based on absorption features. Aim: The main aim of this study was to develop a 1200 nm spectroscopic OCT (SOCT) for the classification of lipid-based and water-based samples by extracting the lipid absorption peak at 1210 nm from the OCT data. Approach: We developed a 1200 nm OCT system and implemented a signal processing algorithm that simultaneously retrieves spectroscopic and structural information from the sample. In this study, we validated the performance of our OCT system by imaging weakly scattering phantoms with and without lipid absorption features. An orthogonal projections to latent structures-discriminant analysis (OPLS-DA) model was developed and applied to classify weakly scattering samples based on their absorption features. Results: The OCT system achieved an axial resolution of 7.2 m and a sensitivity of 95 dB. The calibrated OPLS-DA model on weakly scattering samples with lipid and water-based absorption features correctly classified 19/20 validation samples. Conclusions: The 1200 nm SOCT system can discriminate the lipid-containing weakly scattering samples from water-based weakly scattering samples with good predictive ability.</p

    Imaging of the Lymphatic Vessels for Surgical Planning:A Systematic Review

    Get PDF
    Background Secondary lymphedema is a common complication after surgical or radiotherapeutic cancer treatment. (Micro) surgical intervention such as lymphovenous bypass and vascularized lymph node transfer is a possible solution in patients who are refractory to conventional treatment. Adequate imaging is needed to identify functional lymphatic vessels and nearby veins for surgical planning. Methods A systematic literature search of the Embase, MEDLINE ALL via Ovid, Web of Science Core Collection and Cochrane CENTRAL Register of Trials databases was conducted in February 2022. Studies reporting on lymphatic vessel detection in healthy subjects or secondary lymphedema of the limbs or head and neck were analyzed. Results Overall, 129 lymphatic vessel imaging studies were included, and six imaging modalities were identified. The aim of the studies was diagnosis, severity staging, and/or surgical planning. Conclusion Due to its utility in surgical planning, near-infrared fluorescence lymphangiography (NIRF-L) has gained prominence in recent years relative to lymphoscintigraphy, the current gold standard for diagnosis and severity staging. Magnetic resonance lymphography (MRL) gives three-dimensional detailed information on the location of both lymphatic vessels and veins and the extent of fat hypertrophy; however, MRL is less practical for routine presurgical implementation due to its limited availability and high cost. High frequency ultrasound imaging can provide high resolution imaging of lymphatic vessels but is highly operator-dependent and accurate identification of lymphatic vessels is difficult. Finally, photoacoustic imaging (PAI) is a novel technique for visualization of functional lymphatic vessels and veins. More evidence is needed to evaluate the utility of PAI in surgical planning.</p

    Spectroscopic photoacoustic imaging of radiofrequency ablation in the left atrium

    Get PDF
    Catheter-based radiofrequency ablation for atrial fibrillation has long-term success in 60-70% of cases. A better assessment of lesion quality, depth, and continuity could improve the procedure’s outcome. We investigate here photoacoustic contrast between ablated and healthy atrial-wall tissue in vitro in wavelengths spanning from 410 nm to 1000 nm. We studied single-and multi-wavelength imaging of ablation lesions and we demonstrate that a two-wavelength technique yields precise detection of lesions, achieving a diagnostic accuracy of 97%. We compare this with a best single-wavelength (640 nm) analysis that correctly identifies 82% of lesions. We discuss the origin of relevant spectroscopic features and perspectives for translation to clinical imaging

    A new technique for lipid core plaque detection by optical coherence tomography for prevention of peri-procedural myocardial infarction

    Get PDF
    Rationale: Percutaneous coronary intervention (PCI) provides effective revascularization of atherosclerotic coronary arteries but the invasive nature of treatment can result in complications. Patient concerns: A 53-year old man underwent coronary angiography due to chest pain with minimal ST-segment elevation in the inferior leads of the electrocardiogram. Diagnosis: We proceeded directly to coronary angiography and delineated a moderate stenosis with haziness in the mid right coronary artery (RCA). Interventions: Expert analysis of the pre-intervention OCT imaging demonstrated a large lipid core plaque (LCP), upstream of the culprit site, with minimal thrombus burden. Subsequent implantation of a bioresorbable vascular scaffold, protected with distal deployment of a filter protection device provided an excellent result with retrieval of plaque material. Post-hoc attenuation analysis confirmed the presence of large LCP. Outcomes: A post-procedural transthoracic echocardiogram confirmed good left ventricular function with no regional wall motion abnormality. An excellent clinical outcome was achieved. Lessons: Optical coherence tomography (OCT) derived attenuation analysis can provide with qualitative and quantitative detailed evaluation of the underlying plaque substrate. Our case shows OCT can provide the interventionist with qualitative and qualitative assessment of large LCP for prevention of periprocedural complications, which may improve outcome for PCI

    OCT-measured plaque free wall angle is indicative for plaque burden: overcoming the main limitation of OCT?

    Get PDF
    textabstractThe aim of this study was to investigate the relationship between the plaque free wall (PFW) measured by optical coherence tomography (OCT) and the plaque burden (PB) measured by intravascular ultrasound (IVUS). We hypothesize that measurement of the PFW could help to estimate the PB, thereby overcoming the limited ability of OCT to visualize the external elastic membrane in the presence of plaque. This could enable selection of the optimal stent-landing zone by OCT, which is traditionally defined by IVUS as a region with a PB < 40 %. PB (IVUS) and PFW angle (OCT and IVUS) were measured in 18 matched IVUS and OCT pullbacks acquired in the same coronary artery. We determined the relationship between OCT measured PFW (PFWOCT) and IVUS PB (PBIVUS) by non-linear regression analysis. An ROC-curve analysis was used to determine the optimal cut-off value of PFW angle for the detection of PB < 40 %. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated. There is a significant correlation between PFWOCT and PBIVUS (r2 = 0.59). The optimal cut-off value of the PFWOCT for the prediction of a PBIVUS < 40 % is ≥220° with a PPV of 78 % and an NPV of 84 %. This study shows that PFWOCT can be considered as a surrogate marker for PBIVUS, which is currently a common criterion to select an optimal stent-landing zone
    corecore